TY - Jour A2 - 纳兹尔,沙阿 - 纳萨,拉希德Au - Khan,Bilal Au - Shah,Muhammad Arif Au - Wakil,Karzan Au - Khan,Atif Au - Alosaimi,Wael Au - Uddin,M. Irfan Au - Alouffi,Badar Py - 2020 DA - 2020/12/12 TI - 肝脏综合征早期检测分类算法的性能评估 - 6680002 VL - 2020 AB - 在最近的时代,肝脏综合征导致生活能力的任何损害都特别正常整个世界各地。已经发现,肝病在年轻人中暴露更多,作为与其他老年人的比较。在肝脏能力最终的目的,寿命几乎没有达到1或2天,很难预测早期阶段的这种疾病。研究人员正试图将采用各种机器学习方法提高肝病早期预测模型。然而,本研究将包括A1DE,NB,MLP,SVM,KNN,CHIRP,CDT,Forest-PA,J48和RF的10分类器进行比较,以找到最佳的肝病预测的最佳解决方案。本研究中使用的数据集从UCI M1存储库和GitHub存储库中获取。结果通过RMSE,RRSE,召回,特异性,精度,G测量,F测量,MCC和精度进行评估。探索性结果显示利用UCI数据集的RF更好的后果。 Assessing RF using RMSE and RRSE, the outcomes are 0.4328 and 87.6766, while the accuracy of RF is 72.1739% that is also better than other employed classifiers. However, utilizing the GitHub dataset, SVM beats other employed techniques in terms of increasing accuracy up to 71.3551%. Moreover, the comprehensive outcomes of this exploration can be utilized as a reference point for further research studies that slight assertion concerning the enhancement in extrapolation through any new technique, model, or framework can be benchmarked and confirmed. SN - 2040-2295 UR - https://doi.org/10.1155/2020/6680002 DO - 10.1155/2020/6680002 JF - Journal of Healthcare Engineering PB - Hindawi KW - ER -