TY - Jour A2 - Soliman,Ahmed Au - Pan,小约Au - Zhao,Yizhe Au - Chen,Hao Au - Wei,De Au - Zhao,Chen Au - Wei,Zh Py - 2020 Da - 2020/03/03全自动骨骼年龄评估大规模手X射线数据集SP - 8460493 VL - 2020 AB - 骨龄评估(BAA)是评估儿童生物成熟度的临床实践中的重要主题。由于手动方法是耗时和容易的观测器可变性,因此开发用于BAA的计算机辅助和自动化方法是有吸引力的。在本文中,我们提出了一种全自动的BAA方法。为了消除原始X射线图像中的噪声,我们从使用U-Net开始从原始X射线图像中精确地分段手屏蔽图像。尽管U-Net可以高精度地执行分段,但它需要更大的注释数据集。为了减轻注释负担,我们建议使用深度主动学习(AL),以故意使用足够的信息选择未标记的数据样本。这些样品被赋予Oracle进行注释。之后,他们然后用于后续培训。在开始时,只有300个数据被手动注释,然后在AL框架内的改进的U-Net可以鲁布布地将所有12611图像中的所有12611图像中的rsna数据集进行稳健。 The AL segmentation model achieved a Dice score at 0.95 in the annotated testing set. To optimize the learning process, we employ six off-the-shell deep Convolutional Neural Networks (CNNs) with pretrained weights on ImageNet. We use them to extract features of preprocessed hand images with a transfer learning technique. In the end, a variety of ensemble regression algorithms are applied to perform BAA. Besides, we choose a specific CNN to extract features and explain why we select that CNN. Experimental results show that the proposed approach achieved discrepancy between manual and predicted bone age of about 6.96 and 7.35 months for male and female cohorts, respectively, on the RSNA dataset. These accuracies are comparable to state-of-the-art performance. SN - 1687-4188 UR - https://doi.org/10.1155/2020/8460493 DO - 10.1155/2020/8460493 JF - International Journal of Biomedical Imaging PB - Hindawi KW - ER -